On maximal curves over finite fields of small order

نویسندگان

  • Stefania Fanali
  • Massimo Giulietti
  • Irene Platoni
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

Curves over Finite Fields Attaining the Hasse-Weil Upper Bound

Curves over finite fields (whose cardinality is a square) attaining the Hasse-Weil upper bound for the number of rational points are called maximal curves. Here we deal with three problems on maximal curves: 1. Determination of the possible genera of maximal curves. 2. Determination of explicit equations for maximal curves. 3. Classification of maximal curves having a fixed genus.

متن کامل

Zeta function of the projective curve aY 2 l = bX 2 l + cZ 2 l over a class of finite fields , for odd primes

Zeta function of the projective curve aY 2 l = bX 2 l + cZ 2 l aY 2 l = bX 2 l + cZ 2 l aY 2 l = bX 2 l + cZ 2 l over a class of finite fields, for odd primes l l l Abstract. Let p and l be rational primes such that l is odd and the order of p mod-ulo l is even. For such primes p and l, and for e = l, 2l, we consider the non-singular projective curves aY e = bX e + cZ e (abc = 0) defined over f...

متن کامل

On Curves over Finite Fields with Many Rational Points

We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012